**Introduction**

The Scottish Adult Brachial Plexus Service was established in April 2004 to offer specialist treatment for patients with brachial plexus injuries. The team comprises of an orthopaedic surgeon, orthopaedic nurse specialist, occupational therapist and a clinical specialist physiotherapist.

In the UK, traumatic injuries to the brachial plexus are relatively uncommon, about 600 per annum. There are on average 40 such injuries in Scotland a year.

These are complex and disabling injuries and require specialist input. It is essential that they are carefully assessed and managed from the outset.

---

**Nerves of the Brachial Plexus**
Mechanism of injury

- High velocity injury - stretch injury
- Low impact injury - stretch injury
- Lacerations

If the injury was sustained due to a high velocity accident e.g. a motorcycle RTA, then the likelihood of a more serious pathology is much greater than someone who has sustained an injury from a fall. Patients involved in high velocity accidents are also more likely to sustain other injuries e.g. head injuries, spinal and upper limb fractures and vascular damage.

Patients who have sustained a brachial plexus lesion will present with motor and sensory loss in all or part of the upper limb depending on the extent of the injury.

Clinical factors indicating a relatively mild lesion:

- Low impact
- Incomplete lesion
- No pain
- Tinel’s sign
- Absent Horner’s sign

Clinical factors indicating a more serious lesion:

- High impact injury
- Complete lesion
- Burning or shooting pains present since the time of injury
- ? Horner’s sign (ptosis or drooping of the eyelid with dilation of the pupil)

Damage to the BP can also occur as the result of tumours or as a result of radiation treatment.

Brachial plexus injuries may occur at the time of birth (Obstetric brachial plexus palsy). There is a separate service for children based at the Royal Hospital for Sick Children, Yorkhill, Glasgow.
Grades of injury
The damage to the brachial plexus nerves can be classified into four different grades:

1. Pre-ganglionic tear ............... Nerve root avulsion
2. Post-ganglionic tear ............... Neurotmesis
3. Severe lesion in-continuity .... Axonotmesis
4. Mild lesion in-continuity ....... Neurapraxia

The number and combination of nerves injured are very variable. It should be noted that some patients can present with a combination of root avulsions, post-ganglionic tears and lesions in-continuity.

Adult brachial plexus injuries fall into two categories:

1. Supraclavicular injuries .......... Nerves damaged above the clavicle
2. Infraclavicular injuries .......... Nerves damaged below the clavicle

It is possible for nerves to be injured both above and below the clavicle.

Supraclavicular injuries
Supraclavicular injuries can be caused by a traction injury to the brachial plexus e.g. in a motorcycle accident where the head is side flexed and the shoulder girdle is depressed, or through direct trauma e.g. knife injury or gunshot wound.
Common patterns of supraclavicular injury occur and can be subdivided into three groups:

1. Upper plexus C5,6 (+/-C7 and +/-C8) If C7 and C8 are involved the roots are sometimes avulsed. There is less likelihood that the roots of C5 and C6 will be avulsed.

2. Total plexus - there is damage to all nerve roots. C5, C6 may have post ganglionic ruptures with the roots of C8 and T1 avulsed.

3. Lower plexus - the roots of C8 and T1 are avulsed but C5 and C6 are working normally.

**Avulsion injury/Preganglionic injury**

A high velocity accident is more likely to cause avulsion of the nerve roots from the spinal cord. If the nerve roots are avulsed in this way, there is no successful method available for re-implanting the rootlets (experimental work is underway at the Royal National Orthopaedic Hospital in Stanmore). Patients presenting with avulsion injuries usually complain of an instantaneous onset of pain. This is commonly described as a deep burning pain with frequent shocks of shooting pains throughout the day. The pain is caused by deafferentation of the dorsal horn, which means that with no input from the periphery, pain information passes from the dorsal horn to the brain unmodulated. Interestingly, these patients usually do not have problems with sleep disturbance due to pain.

Apart from the clinical examination, an MRI scan will often help to confirm the diagnosis. From the scan results, the location of the root avulsion can sometimes be seen, as there is the presence of a meningocele (sack filled with CSF leaking from the spinal cord).

Although re-implantation of nerve rootlets is not widely used, other methods of restoring nerve supply can be undertaken, e.g. nerve transfers. This will vary from patient to patient and will depend on the extent of the damage and therefore the feasibility of using unaffected nerves. Commonly used nerves for nerve transfers are the intercostals, accessory nerve and the medial pectoral nerve.

This group of patients will always have some form of motor deficit. Secondary operations may be considered - for example an unstable shoulder may benefit from a shoulder arthrodesis.
Infraclavicular injuries
This type of injury can affect any one or all of the peripheral nerves. The most common presentations are:

- A complete lesion
- Damage to axillary nerve
- Damage to musculocutaneous nerve

These injuries are usually caused by excessive tractioning of the brachial plexus e.g. following shoulder dislocation or in conjunction with a fractured humerus.

As with all BPI, assessment including muscle testing, sensation testing and neurophysiology tests help to complete the clinical picture. It is especially important to check with those patients presenting following shoulder dislocation that the disruption of shoulder movement is not caused by a tear in the rotator cuff.

Where there has been a severe infraclavicular injury affecting several peripheral nerves, the surgeon may choose to reconstruct only some of the peripheral nerves. This could be because the gap between the damaged nerve ends is too wide to successfully bridge. Sometimes if a nerve is irreparable it is used to reconstruct another peripheral nerve.

Surgical patient
Before deciding to operate the surgeon will take into consideration the age of the patient. Older patients are known to not recover as well from reconstruction surgery as younger patients.

There are two categories of surgical patient:
1. Primary
2. Secondary

Primary repairs
These are normally carried out as soon as possible and usually within 3 months of injury.

1. Nerve grafting/reconstruction
2. Nerve transfer
Nerve graft/Nerve transfer

Post-operatively patients who undergo nerve grafting and nerve transfers are managed in a similar way.

Patients are normally admitted to the Orthopaedic ward, one day prior to surgery. They will usually have been assessed (see appendix 1) at the Brachial Plexus Injuries Clinic pre-operatively. In addition other investigations such as neurophysiology tests and MRI will already have been done.

Other assessment tools used at the clinic are the DASH questionnaire, HAD Score (Hospital Anxiety and Depression Score) and the Narakas Score. These are recorded at regular intervals.

When a patient is admitted to the ward the physiotherapy inpatient staff liaise with the Clinical Lead, Specialist Nurse and Occupational Therapist. A unified approach is important to avoid conflicting information being given to the patient.
Rehabilitation

1-4 weeks post-op

Patients are usually discharged from the ward on Day 2 or 3 post-operatively.

Outpatient follow-up is arranged when the discharge date is known. This is organised by the physiotherapy in-patient staff. Once there is confirmation of the arrangements, the information is passed to the BPI physiotherapist. Operation notes are available and a copy can be requested from the BPI administrator.

After nerve grafting and nerve transfers, the patients are immobilised in a polysling for 4 to 6 weeks. During this time they are not allowed to move their shoulder, however they should be encouraged to maintain the movements of their wrist and fingers.

It is possible that patients will have sustained multiple injuries, which will also require rehabilitation. If the patient has been treated at another hospital for other injuries sustained at the time of their BPI then it is usual for that hospital to continue with the review/management of these injuries. The BPI service is specifically funded to treat BPI’s only.

4-6 weeks post-op

The patient is normally reviewed at the BPI clinic or one of Mr. Hems’ Orthopaedic clinics before the polysling is removed. However, if the timing does not coincide with the next clinic appointment and the operation notes clearly specify when the sling is to be removed you can go ahead and remove the sling. If in doubt contact a member of the BPI team.

When the sling is initially removed the patient will be apprehensive. Sometimes there is increased pain due to the change in position, so it is important to advise the patient to take their pain medication before treatment.

As one would expect once the sling is removed the patients have restricted passive movements of the upper limb. It is therefore important to start on a passive movement programme (see Appendix 4). If they have any active movements then this should also be started. There are usually no restrictions as to what they are allowed to do.
Characeristic limitations of movement
Shoulder joints: Elevation, abduction, lateral rotation
Elbow joints: Extension and supination
Wrist joints: Flexion and extension
MCP joints: Flexion
PIP joints: Extension

Soft tissue changes
- Reduced web space
- Shortening of the long flexors
- Fibrosis of the intrinsic muscles

(Victoria Frampton 1999 Journal of Hand Therapy)

If the movements of the shoulder are very restricted it is useful to show a relative how to help with the exercises, particularly lateral rotation and abduction. Once a reasonable passive range has been achieved, the patient can start to combine movements (i.e. elevation/abduction and lateral rotation) and continue their exercise independently. This is an important aspect of the patient’s upper limb management.

If the patient is happy to keep the sling off then this should be encouraged. If not, gradually reduce the amount of time that the sling is worn for. Some patients like the comfort of the sling when they go out, or when they are playing football.

Aims of treatment
- Increase/maintain range of movement
- Mobilise tight scar tissue
- Maintain good joint position, splint if necessary
- Discuss/help with pain control
- Improve posture and balance
- Encourage return to work or sport

In terms of rehabilitation, the main aim is to maintain joint range of movement, improving muscle power in any group of muscles that have surviving motor units and regain a maximum level of function.
Pain
Some patients who have severe pain may find pain relief modalities helpful (i.e. TENS or acupuncture). The most effective method of easing patient’s awareness of pain is by action and distraction. The Clinical Nurse Specialist offers relaxation therapy and counselling whilst Occupational Therapists can also utilise relaxation and visualisation techniques as a part of a pain management programme and discuss various coping skills that can be utilised with chronic pain.

Since causalgia is related to tension and stress, relaxation techniques are beneficial in pain management. Some patients may be referred to their local pain control team. However, their pain medication is discussed at the clinic and recommended changes in their drugs are conveyed to the patient’s GP.

For patients complaining of mechanical pain related to shoulder subluxation, it may be worthwhile trying a shoulder support. A variety of these are on the market.

“Return to work is vital in the rehabilitation of these patients, not only to get back to normal life, but, if they are suffering pain, this is probably the only consistent means of providing distraction from pain”.

(Wynn Parry, 1984)

One year +
Patients should be starting to show signs of recovery in the nerves that have been reconstructed. Early signs would be a progressive Tinel’s sign which would become apparent before other signs of recovery. Once a flicker can be detected in a muscle it is important to intensify treatment again. It may be that patients are shown anti-gravity positions to exercise in, or use muscle stimulators over motor points (see Appendix 1) or ice brushing. Sometimes it is hard to convince the patient that the muscle is working as no movement is being produced. Once recovery starts it normally continues to progress. Recovery may continue for 4 to 5 years.

Aim of surgery and expected outcome
The aim of a primary repair is principally to improve motor function. However, primary surgical repair can aim to improve sensory function particularly protective sensation in the hand.

The expectation from primary repair is to achieve elbow flexion. Results in terms of effective shoulder control have so far been mixed with some patients requiring a secondary operation for shoulder arthrodesis.
Hand and wrist function can be improved with primary surgery but if necessary can benefit from secondary operations e.g. tendon transfers and bony fusions.

**Secondary operations**
Secondary operations fall into two categories:

1. Bony fusions
2. Tendon transfers

Bony fusions will only be considered when there is no chance of further useful recovery. The joints most commonly fused are the wrist and the shoulder.

**Shoulder arthrodesis**
This is one of the most common secondary operations undertaken. It is performed because the patient has poor shoulder control but has gained other functional return in the hand and elbow. Due to the lack of control at the shoulder the rest of the upper limb’s function cannot be maximised. In order for the patient to be suitable for this procedure they must have good thoracoscapular muscle power e.g. upper trapezius, serratus anterior.

**Rehabilitation**
Following shoulder arthrodesis patients are immobilised in an abduction brace for at least 6 weeks. They are advised about the position, function and appearance of the brace. Once the brace is removed they can start passive and active movements. The range of movement usually progresses quite quickly, with the expectation that they will be able to achieve between 60 to 90 degrees of elevation and abduction.

The patient is warned that they will have loss of medial rotation, hand behind back and that the arm will hang in a slightly abducted position.

**Tendon transfers**
Tendon transfers are considered at a later stage, usually at about two years post injury. Sometimes tendon transfers will be considered before this to aid function while recovery in the nerves takes place.

Tendon transfers are most commonly performed in the hand. However, occasionally free muscle transfers may be used to improve elbow flexion e.g. gracilis.

Patients who present with avulsion of the roots of lower trunk (C8 -T1) only may eventually be appropriate for tendon transfer. In order for this
to be successful it is important to teach the patient how to maintain joint range of movement and to maximise the strength in the muscle groups which are still functional. Tendons used for transfer must be a Grade 4 or better. Tendon transfers in the hand must be planned so that pinch and grip will be improved.

Rehabilitation involves the re-education of function, occasionally with trick movements or with the co-ordination of other movements e.g. wrist extension with finger flexion. Operation notes will be available with some indication of the exercises/functional movements that the patient has to perform.

The non-surgical group of patients
Patients who fit into this category are those who have suffered temporary damage to the conduction of the nerve for example a neurapraxia or an axonotmesis or those who have had a virus causing a brachial neuritis. These injuries/pathologies can take from several months to over a year to recover and it is therefore essential that the patient understands this and knows the importance of maintaining joint range of movement while waiting for recovery.

Rehabilitation of the non-surgical patient
Physiotherapy input is important and it needs to be tailored to suit the individual patient. Reassurance is one of the key issues and it is important to fulfil this role. It may be that the patient only needs to have treatment once every 4 to 6 weeks if they are managing their exercises and have good range of movement.

It may be necessary to provide some form of splinting to aid function or to maintain hand position. If you feel that this would be beneficial and are unable to provide this type of splinting please contact the BPI service.

When planning return visits you should take into consideration the stage of recovery and estimated time for signs of recovery starting. Sometimes early signs of recovery are difficult to detect and this highlights the importance of accurate record keeping. Once a flicker of muscle contraction can be detected the patient should then be started on exercises to maximise this improvement e.g. ice brushing, muscle stimulation (see Appendix 1 A and B for motor point chart), gravity-assisted exercises.

Even the smallest sign of recovery gives the patient tremendous encouragement.

The Brachial Plexus Service also has a number of muscle stimulators which are available on loan. Contact the BPI Service Physiotherapist.
**Simplified diagram of the brachial plexus**

*Extract from 'Guidelines on management and transfer of Brachial Plexus Injury', Scottish Brachial Plexus Injury Service.*
Brachial plexus peripheral nerve distribution

**Suprascapular nerve C5,6**
Shoulder Girdle:
- *Supraspinatus*
- *Infraspinatus*

**Long thoracic nerve C5,6,7**
Shoulder Girdle:
- *Serratus anterior*

**Axillary nerve C5,6**
Shoulder Girdle:
- *Teres minor*
- *Deltoid*

**Musculocutaneous nerve C5,6**
Arm:
- *Biceps*
- *Coracobracliais*
- *Brachialis*

**Median nerve C6-T1**
Forearm and Hand:
- *Pronator teres; Pronator quadratus; APB; Opponens; FCR; Palmaris longus; FDS; FDP to index and middle fingers; FPB (lateral head); Lumbricals*

**Radial nerve C6-T1**
Arm:
- *Triceps - long, lateral and medial head*
- *Brachioradialis*
Forearm and Hand:
- *ECRL*
- *ECRB*
- *Supinator; EDC; EDM; ECU; APL; EPB; E1*

**Ulnar nerve (C7) C8-T1**
Forearm and hand:
- *FCU*
- *FDP (ring and little fingers)*
- *FDMB; ADM; ODM; Interossei; Lumbricals; Adductor pollicis; FPB (medial head)*
## Brachial plexus peripheral nerve distribution and functional limitations

<table>
<thead>
<tr>
<th>Nerves</th>
<th>Muscles</th>
<th>Functional limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suprascapular nerve C5, 6</td>
<td>Supraspinatus Infraspinatus</td>
<td>Weakened lateral rotation of humerus.</td>
</tr>
<tr>
<td><em>(Shoulder girdle)</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long thoracic nerve C5 - 7</td>
<td>Serratus interior</td>
<td>'Winged scapula'. Difficulty flexing outstretched arm above level of shoulder. Difficulty protracting shoulder.</td>
</tr>
<tr>
<td><em>(Shoulder girdle)</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axillary nerve C5, 6</td>
<td>Teres minor Deltoid</td>
<td>Loss of arm abduction. Weakened lateral rotation of humerus.</td>
</tr>
<tr>
<td>Musculocutaneous nerve C5 - 7</td>
<td>Biceps Coracobrachialis Brachialis</td>
<td>Loss of forearm flexion and supination.</td>
</tr>
<tr>
<td><em>(Arm)</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median nerve C5 - T1</td>
<td>Pronator terres Pronator quadratus APB; Opponens; FCR, Palmar longus; FDS; FDP (to index and middle); FPB (lateral head) Lumbricals</td>
<td>'Monkey hand' deformity. Weakened grip. Thenar atrophy. Unopposed thumb, loss of pinch grip.</td>
</tr>
<tr>
<td>Radial nerve C5 - T1</td>
<td>Triceps (long, lateral and medial head) Brachioradialis</td>
<td>Absent / weak supination. 'Wrist drop' Extensor paralysis of fingers and thumb.</td>
</tr>
<tr>
<td><em>(Arm)</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radial nerve C5 - T1</td>
<td>ECRL; ECRB Supinator EDC; EDM; ECU; APL; EPB; EI</td>
<td>Loss of wrist, thumb and finger extension.</td>
</tr>
<tr>
<td><em>(Forearm and hand)</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulnar nerve C8 - T1</td>
<td>FCU FDP (ring and little) FDMB; ADM; ODM Interosseus Lumbricals AP; FPB (medial head)</td>
<td>'Clawhand deformity'. Interosseus atrophy. Loss of thumb abduction.</td>
</tr>
<tr>
<td><em>(Forearm and hand)</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Modified from Pedretti, L in Pendleton & Krohn (2006)*
Further reading

**Surgical Disorders of the Peripheral Nerves**
*Churchill Livingstone*

**Nerve Injury and Repair. Regeneration, Reconstruction and Cortical Remodelling (2nd Ed.)**
*Elsevier Churchill Livingstone*

**Pedretti’s Occupational Therapy (6th Ed.)**
*Elsevier Mosby*

**Hand Therapy, Principles and Practice**
*Butterworth Heinmann*

**Update on brachial plexus surgery in adults**
*Current Opinion in Orthopaedics, 15. pp 203-214*

**Clinics in Plastic Surgery**
Brachial Plexus Injury Service Team - contact names and telephone numbers

Lead Clinician: Tim Hems
(Contact below*)

Clinical Specialist Physiotherapist: Jane Green
0141 201 5541

Clinical Nurse Specialist: Beverley Wellington
0141 201 5394

Occupational Therapist: Debbie Clyde
0141 201 1500

BPI Service Administrator: *David McKay
0141 201 5436

Brachial Plexus Injury Service Website
www.brachialplexus.scot.nhs.uk
Brachial plexus injury management guidelines (see Appendix 2) and referral forms can be viewed and downloaded.
Appendix 1A - Motor points (anterior aspect of right arm)

- Deltoid (middle fibres)
- Coracobrachialis
- Biceps Brachii
- Brachialis
- Brachioradialis
- Flexor Carpi Radialis
- Flexor Digitorum Superficialis (superficial fibres)
- Flexor Pollicis Longus
- Flexor Digitorum Profundus (lateral fibres)
- Abductor Pollicis Brevis
- Opponens Pollicis
- Flexor Digitorum Superficialis (deep fibres)
- Flexor Digitorum Profundus (medial fibres)
- Abductor Digitii Minimi
- Flexor and Opponens Digitii Minimi
- Pronator Teres
- Flexor Carpi Ulnaris
- Palmaris Longus
- Pronator Teres
- Coracobrachialis
- Pectoralis Major
- Deltoid (anterior fibres)
- Bicep Brachii
- Brachialis
- Brachioradialis
- Deltoid (anterior fibres)
- Pectoralis Major
- Coracobrachialis
- Pronator Teres
- Flexor Carpi Ulnaris
- Palmaris Longus
- Pronator Teres
- Coracobrachialis
- Pectoralis Major
- Deltoid (anterior fibres)
Appendix 1B - Motor points (posterior aspect of right arm)

Deltoid (posterior fibres)
Deltoid (middle fibres)
Triceps (lateral head)
Triceps (long head)
Supinator
Extensor Carpi Radialis Longus and Brevis
Extensor Pollicis Longus and Extensor Pollicis Brevis
Extensor Pollicis Longus
Adductor Pollicis
Extensor Carpi Ulnaris
Extensor Digiti Minimi
Interossei
Guidelines on management and transfer of Brachial Plexus Injury
Victoria Infirmary, Acute Services Division, NHS Greater Glasgow and Clyde

We welcome referral of any acute trauma patient with a brachial plexus injury. We can also advise on any peripheral nerve injury and admit as necessary. All patients must be assessed by local trauma team.

Tel: 0141 201 5436 (Office hours) OR: 0141 201 6000 Bleep 5440
Fax: 0141 201 5082
Email: brachial.plexus@gvic.scot.nhs.uk
Website: www.brachialplexus.scot.nhs.uk

Department of Orthopaedic Surgery
Langside Road
Glasgow G42 9TY

REFER AND TRANSFER

ASSESS

Assess
Acute - resuscitate and stabilise patient.
Airway, Breathing, Circulation.

Risk factors and associations for Brachial Plexus Injury
- High velocity RTA, especially motorbike.
- Fracture or dislocation of shoulder, scapular, or elbow.
- Open/penetrating injury to neck, upper quadrant of trunk, or arm.
- Arterial injury in upper limb.
- Traumatic injury to the upper limb.

Signs of injury
- Swelling above and/or below the clavicle.
- Horner's signs.
- Severe pain in the upper limb.
- Paralysis.
- Sensory loss.

Investigations
Mandatory: Radiographs - Chest; C-spine.
Optional: MRI of the C-spine or CT-myelography. Both are useful in diagnosing root avulsions although neither is 100% accurate. MRI is easier to perform early after injury. Neurophysiology is not usually helpful in the acute situation. 

Referral Centre - Glasgow
Mr T. Hems ________ Tel. 0141 201 5436
Mr C. Dreghorn
(Dept. of Orthopaedic Surgery, Victoria Infirmary, Glasgow G42)

Local coordinators
Highland ____________ Mr. D. Inlayten (Tel. (0141) 7040400)
Abertay and Ayrshire ________ Mr. A. Inlayten (Tel. 01224 596675)
Lothian ____________ Mr. C. Oliver Tel. (0131 242 3042)
Tayside ____________ Mr. J. Grant (Tel. 0382 60111)
Abertay and Ayrshire ________ Mr. C. Mackay (Tel. 01363 777878)
Aberdeen ____________ Mr. S. Barnes Tel. (01475 633777)

Obstetric Brachial Plexus Paraly
Referrals are welcomed to Department of Orthopaedic Surgery, Royal Hospital for Sick Children, W vonH, Glasgow (Dr David Sharlock and Mr Tim Hems).

Injuries to the Lumbarosacral Plexus
Indications for referral
- Open injuries.
- Closed injuries after 3 months. Complete absence of function in the femoral nerve or the tibial division of the sciatic nerve.

Motor assessment

Complex upper limb trauma

Vascular injury
No vascular injury
Life threatening haemorrhage
Not life threatening
Open or closed injury
Emergency operation to repair vessels
Arteriography
Brachial plexus exploration

Contact Brachial Plexus Service

Vascular repair

ASSESS - Vessels, Nerves, Bones

Complete a referral form

Please provide the following information for all patients.

- Referral forms can be obtained by telephoning: 0141 201 5436
or can be downloaded as a PDF file from: www.brachialplexus.scot.nhs.uk
Appendix 3 - BPI Injury Patient Assessment Form

The Victoria Infirmary, Glasgow

National Brachial Plexus Injury Service
Patient Assessment

<table>
<thead>
<tr>
<th>Patient details</th>
<th>Referring hospital:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name; DoB; Address; Telephone</td>
<td></td>
</tr>
</tbody>
</table>

| Use addressograph label if available | |

| Dominant hand: | |
| Occupation: | |
| Date of injury: | |
| Social support: Yes ☐ No ☐ Family ☐ Partner ☐ Alone ☐ | |

| List other injuries: | C-spine MRI: |
| | |

| Previous treatments: | Relevant past medical history: |
| | |

| Previous treatments: | |

| Brachial Plexus details | |
|-------------------------| |
| Side affected: | |
| Open or closed injury: | |

| Arterial Injury: Yes ☐ No ☐ | Excessive alcohol use: Yes ☐ No ☐ Units/week: |
| Pulsed affected in limb: | Drugs (IVDA): Yes ☐ No ☐ |
| If absent, is there critical limb ischaemia?: | |
| Horner's Sign: Yes ☐ No ☐ | |
| Tinel's Sign: Yes ☐ No ☐ | |
| Site of bruising: | |
| MRSA status | + / - OR swabs taken: ☐ |

<p>| Details of incident (low or high energy, penetrating etc.) | |
|----------------------------------------------------------| |
| Chart continues overleaf |</p>
<table>
<thead>
<tr>
<th>Motor Assessment (Grade 1-5)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapezius</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serratus Anterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supra / Infraspinatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deltoid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pectoralis Major</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lat. Dorsi / Teres Major</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biceps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triceps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wrist Extensors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensor Digitorum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palmaris Longus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDSs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thenar Muscles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interossei</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensory Assessment (Normal, Altered, Absent)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median nerve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulnar nerve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radial nerve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Passive movement</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoulder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elbow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Functional Scores</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DASH Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Narakas Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAS Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAD Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Employment status key:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Return to previous employment</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return to different employment</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not working</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 4 - Exercise Programme

The text and illustrations below are an extract from the patient information booklet for brachial plexus injury patients 'Scottish National Brachial Plexus Injury Service - Information for Patients'.

Physiotherapy Exercise Programme

The following programme of exercises is designed to help you be as independent as possible while doing the exercises.

You will be told when you are ready to start these exercises. A physiotherapist will show you exactly what you have to do.

The shoulder and elbow exercises are usually started at 4 to 6 weeks, once the Polysling has been removed. The wrist and hand exercises can be done while the Polysling is on. You should repeat each exercise 10 times, twice or three times each day.

Shoulder exercises

1. Lying on your back, clasp your affected arm by the wrist or hand and lift your arm above your head. This should gradually improve until you are able to take your arm all the way above your head as shown.

2. You will need help with this exercise. The person helping you puts one hand across the top of your shoulder to stop it moving. With their other hand they grasp around your elbow and then fix your forearm between their body and side. Your arm is then moved out to the side as far as possible.
3. You will need help with this exercise. The helper holds around your elbow to keep your arm close to your side. Their other hand holds around the wrist and in this position turns your arm out towards them.

4. Once your movement improves enough for you to reach above your head, you can stop exercises 2 and 3 and use this combined exercise instead.

Lift your affected arm up as far as you can and put your hands behind your head. In this position, stretch your elbow back towards the pillow.

**Elbow exercises**

5. While standing, hold your affected arm around the wrist and help bend your elbow up as far as you can.
6. Straighten your elbow out as far as you can. To help you get more straightening, place your other hand behind the point of elbow.

If you find this difficult, try adding a light weight as shown below.

**Wrist exercises**

7. While seated, help your affected hand by putting palm to palm and push the wrist back.

8. While seated, place your unaffected hand over the back of your affected hand and bend the wrist forward.
9. Hold your affected hand in the mid part of the palm and turn your hand up.

10. Hold your affected hand in the mid part of the palm and turn your palm down.

Hand exercises

11. Use your unaffected hand to help bend your fingers into your palm. Make sure you bend your fingers from the knuckles so you are curling your fingers as much as possible.
12. Spread your fingers by placing the fingers of your unaffected hand in between the fingers of your affected hand and stretch them apart.

13. Stretch your thumbs across your palm as far as you can.

14. While seated, fix your hand between your knees and stretch your thumb away from the fingers.